OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG

Fakultät für Verfahrens- und Systemtechnik Fakultät für Elektrotechnik und Informationstechnik Fakultät für Naturwissenschaften Medizinische Fakultät

Studienordnung

für den Studiengang

Biosystemtechnik

vom 4. November 2003

Aufgrund des Hochschulgesetzes des Landes Sachsen-Anhalt (HSG-LSA) in der Fassung der Bekanntmachung vom 1.7.1998 (GVBI. LSA S. 300), zuletzt geändert durch Anlage laufende Nummer 219 zum Vierten Rechtsbereinigungsgesetz vom 19.03.2002 (GVBI. LSA S. 130) hat die Otto-von-Guericke-Universität Magdeburg die folgende Studienordnung als Satzung erlassen.

Inhalt

§	1	Allgemeine Studienhinweise
§	2	Geltungsbereich
§	3	Studienabschluss
§	4	Studiendauer
§	5	Studienbeginn
§	6	Zulassungsvoraussetzungen
§	7	Ziel des Studiums
§	8	Gliederung des Studiums
§	9	Studieninhalte
§	10	Studienfachberatung
§	11	Schlussbestimmungen

Anlagen:

- Anlage 1: Studienplan GrundstudiumAnlage 2: Studienplan Hauptstudium

§ 1 Allgemeine Studienhinweise

Diese Studienordnung enthält Hinweise allgemeiner Art; zur genauen Orientierung und Planung des Studiums sind weitere Informationen notwendig. Zu diesem Zweck wird den Studierenden empfohlen, sich mit der Prüfungsordnung des Studienganges Biosystemtechnik vertraut zu machen und zu einer Studienberatung möglichst frühzeitig Kontakt mit Hochschullehrerinnen, Hochschullehrern, wissenschaftlichen Mitarbeiterinnen und Mitarbeitern aufzunehmen. Die im Anhang aufgeführten Zeitpunkte zur Belegung von Lehrveranstaltungen sind als Empfehlung für die Absolvierung des Studiums in der Regelstudienzeit zu verstehen. Weitere über das Studium sind Informationen im Prüfungsamt. Dezernat Studienangelegenheiten der Otto-von-Guericke-Universität Magdeburg und im Studentenrat erhältlich. Außerdem wird auf die Informationsschriften und Aushänge dieser Stellen verwiesen.

§ 2 Geltungsbereich

Diese Studienordnung regelt auf der Grundlage der gültigen Diplomprüfungsordnung und Praktikumsordnung Ziel, Inhalt und Aufbau des Studiums für den Studiengang Biosystemtechnik.

§ 3 Studienabschluss

Das Studium führt zum berufsqualifizierenden Abschluss durch den Erwerb des akademischen Grades "Diplomingenieurin" oder "Diplomingenieur" (Dipl.-Ing.).

§ 4 Studiendauer

Der Studiengang ist so gestaltet, dass das Studium einschließlich der Diplomarbeit in 10 Semestern abgeschlossen werden kann.

§ 5 Studienbeginn

Das Lehrangebot ist auf einen Studienbeginn im Wintersemester ausgerichtet.

§ 6 Zulassungsvoraussetzungen

(1) Voraussetzung für die Zulassung zum Studium ist das Zeugnis der allgemeinen Hochschulreife, einer einschlägigen fachgebundenen Hochschulreife oder ein durch

Rechtsvorschrift oder vom Kultusministerium des Landes Sachsen-Anhalt als gleichwertig anerkanntes Zeugnis. Einzelheiten regelt die Immatrikulationsordnung.

(2) Die Prüfungsordnung verlangt eine berufspraktische Tätigkeit von insgesamt 26 Wochen, deren Inhalt und Anforderungen in der Praktikumsordnung festgelegt sind. Das Grundpraktikum umfasst mindestens 10 Wochen und ist in der Regel vor Studienbeginn zu absolvieren. Näheres regelt die Praktikumsordnung. Das Fachpraktikum umfasst mindestens 16 Wochen (21 CP). Der Nachweis des Grundpraktikums ist Voraussetzung für die Erteilung des Vordiplomzeugnisses, der des Fachpraktikums für die Zulassung zur Diplomarbeit.

§ 7 Ziel des Studiums

- Ziel des Studiums ist es, gründliche Fachkenntnisse und die Fähigkeit zu erwerben, nach wissenschaftlichen Methoden selbstständig zu arbeiten, sich in die vielfältigen Aufgaben der auf Anwendung, Forschung oder Lehre bezogenen Tätigkeitsfelder selbständig einzuarbeiten und die häufig wechselnden Aufgaben zu bewältigen, die im späteren Berufsleben auftreten. Schwerpunkt des Studienganges ist eine systembiologisch orientierte Ausbildung von Ingenieuren auf Basis eines interdisziplinären Curriculums mit Grundlagen- und Anwendungsfächern aus den Bereichen Ingenieurwesen, Medizin und Naturwissenschaften, ergänzt durch Vorlesungen aus anderen Bereichen, insbesondere der Mathematik und Informatik. Berufliche Einsatzfelder sind sowohl Grundlagenforschung in Ingenieurwissenschaften, Biologie, Medizin und Bioinformatik als auch angewandte Forschung bei Unternehmen in Pharmazie, Medizintechnik, (Bio-)Informatik und Biotechnologie. Ferner kommen Tätigkeiten bei Fachbehörden in EU, Bund, Ländern und Kommunen oder die Arbeit als Sachverständige bei Versicherungen, Patentanwälten, etc. in Betracht. Neben dem Wissenserwerb und der Ausprägung von Befähigungen in den verschiedenen Formen der Lehrveranstaltungen ist das Selbststudium für den erfolgreichen Studienabschluss unerlässlich.
- (2) Die im Studium erworbenen fachspezifischen Grundlagen sollen in Wahlpflichtmodulen vertieft und erweitert werden. Dabei wird zunehmend bis hin zur Diplomarbeit eine Heranführung an Probleme der aktuellen Forschung angestrebt.
- (3) In einem vorgeschriebenen Umfang sind auch nichttechnische Wahlpflichtmodule aus den Bereichen Wirtschaftswissenschaft, Rechtswissenschaft, Kommunikation, Rhetorik, Mitarbeiterführung u.a. zu belegen, weil die spätere Berufstätigkeit auch Kenntnisse auf diesen Gebieten fordert.
- (4) Neben der fachspezifischen Ausbildung werden im Rahmen des Studiums auch die Teilnahme an Veranstaltungen zu geschichtlichen, gesellschaftspolitischen, künstlerischen, ethischen, philosophischen und anderen Themen, z.B. im Rahmen des "studium generale", eine Aus- oder Weiterbildung in mindestens einer Fremdsprache und eine sportliche Betätigung empfohlen.
- (5) Den Studierenden wird die Mitarbeit in den Gremien der Selbstverwaltung der Universität und in den Organen der Studentenschaft empfohlen.

§ 8 Gliederung des Studiums

- (1) Das Studium gliedert sich in
- das Grundstudium von vier Semestern und
- das Hauptstudium von sechs Semestern.
- (2) Der für den erfolgreichen Abschluss des Studiums erforderliche zeitliche Gesamtumfang der Lehrveranstaltungen im Pflicht- und Wahlpflichtbereich beträgt
- im Grundstudium 95 Semesterwochenstunden (SWS) (120 CP),
- im Hauptstudium 76 Semesterwochenstunden (SWS) (180 CP).
- (3) Das Grundstudium schließt mit der Diplomvorprüfung ab, in der die Studierenden nachzuweisen haben, dass sie die Grundlagen in einem für die erfolgreiche Fortsetzung des Studiums notwendigen Umfang beherrschen. Die Diplomvorprüfung stellt keinen berufsqualifizierenden Abschluss dar.
- (4) Das Hauptstudium umfasst auch das Fachpraktikum im Umfang von 21 CP, die Studienarbeit (15 CP) und die Diplomarbeit (30 CP).
- (5) Die Diplomarbeit ist eine selbstständige wissenschaftliche Arbeit, die in schriftlicher Form einzureichen und in einem Kolloquium zu verteidigen ist. Dabei soll die Studentin oder der Student zeigen, dass sie oder er innerhalb einer vorgegebenen Frist ein technisches Problem selbständig mit wissenschaftlichen Methoden bearbeiten kann.

§ 9 Studieninhalte

- (1) Die für einen erfolgreichen Abschluss des Grundstudiums geforderten Lehrgebiete einschließlich der Fachprüfungen und Prüfungsvorleistung sowie ihre Zuordnung zum ersten (am Ende des 1. Studienjahres) und zweiten (am Ende des 2. Studienjahres) Prüfungsabschnitt sind in der Diplomprüfungsordnung vorgeschrieben. Die Verteilung der Lehrveranstaltungen auf die ersten vier Semester zeigt Anlage 1.
- (2) Das Hauptstudium besteht aus Pflichtmodulen, Wahlpflichtmodulen und nichttechnischen Wahlpflichtmodulen. Die zweckmäßige Verteilung der Module auf die Semester des Hauptstudiums ist in der Anlage 2 angegeben. In der Anlage 2 sind ebenfalls die Pflichtmodule angegeben. Die zugehörigen Wahlpflichtmodule sind in einem Wahlpflichtmodulekatalog aufgeführt. Aus diesem Katalog kann der Student Module entsprechend dem geforderten Gesamtumfang an Semesterwochenstunden auswählen. Ein Katalog für die nichttechnischen Module wird vor jedem Semester durch den Fakultätsrat über das Prüfungsamt bekanntgegeben. Die geforderten Prüfungen und die Prüfungsvorleistungen sind in der Prüfungsordnung des Studienganges festgelegt.
- (3) Im Hauptstudium muss eine Studienarbeit angefertigt werden. Durch die Studienarbeit sollen die Studierenden in das selbständige Arbeiten nach wissenschaftlichen Methoden eingeführt werden. Die Studienarbeit ist Voraussetzung für die Zulassung zur Diplomarbeit. Das Thema der Studienarbeit muss so gestellt

werden, dass es mit einem Zeitaufwand von etwa 450 (15CP) Stunden bearbeitet werden kann. Der Bearbeitungszeitraum beträgt in der Regel 3 Monate.

(4) Als abschließende Prüfung wird das Anfertigen einer Diplomarbeit einschließlich des zugehörigen Kolloquiums verlangt. Der Zeitraum der Erarbeitung der Diplomarbeit und die Durchführung des Kolloquiums sollen in der Regel 6 Monate (30CP) nicht überschreiten.

§ 10 Studienfachberatung

- (1) Um den Studierenden die Orientierung an der Universität zu erleichtern, werden zu Beginn jedes Wintersemesters einführende Veranstaltungen angeboten.
- (2) Um die Orientierung zur Wahl von Wahlpflichtmodulen nach der Diplomvorprüfung zu erleichtern, werden dem Studenten inhaltliche Erläuterungen zum Hauptstudium mittels Informationsschriften und Informationsveranstaltungen angeboten.
- (3) Eine Studienfachberatung durch eine Fachberaterin oder einen Fachberater der Fakultät kann jederzeit in Anspruch genommen werden und erscheint insbesondere in folgenden Fällen zweckmäßig:
- Anlaufschwierigkeiten bei Studienbeginn,
- wesentliche Überschreitung der Regelstudienzeit,
- nicht bestandene Prüfungen oder nicht erfüllte Prüfungsvorleistungen,
- Studiengang- oder Hochschulwechsel,
- Auslandsstudium und individuelle Studienplangestaltung.
- (4) Im Hinblick auf die Studienarbeit und die Diplomarbeit empfiehlt es sich, im Hauptstudium möglichst frühzeitig mit Hochschullehrerinnen oder Hochschullehrern Kontakt aufzunehmen.

§ 11 Schlussbestimmungen

Diese Studienordnung tritt am Tage nach ihrer Bekanntmachung im Verwaltungshandbuch der Otto-von-Guericke-Universität Magdeburg in Kraft.

Ausgefertigt aufgrund des Beschlusses des Fakultätsrates der Fakultät für Verfahrens- und Systemtechnik vom 4. November 2003 und der Bestätigung durch den Senat der Otto-von-Guericke-Universität Magdeburg vom 18.02.2004.

Magdeburg, 23.02.2004

Der Rektor der Otto-von-Guericke-Universität Magdeburg

Anlage 1: Studiengang: Studienplan Grundstudium Biosystemtechnik

	Systemtechnik SWS gesamt Semesterwochenstunden V/Ü/P					
Lehrgebiet	(Kreditpunkte)	Seme 1. Sem.	4. Sem.			
Mathematik I/II	10 (12)	3/2/-	2. Sem. 3/2/-	3. Sem.		
Mathematik III/IV	8 (10)			3/2/-	2/1/-	
Numerik	4 (5)				2/2/-	
Informatik	3 (4)	2/1/-				
Physik I/II	7 (9)	2/1/-	2/-/-	-/-/2		
Anorganische Chemie	3 (4)	2/1/-				
Chem. Grundpraktikum	6 (7)	-/1/1	-/1/1		-/1/1	
Organische Chemie	3 (4)		2/1/-			
Physikalische Chemie	4 (5)			1/1/-	1/1/-	
Grundlagen der Biologie	4 (5)	2/-/-	-/-/2			
Grundlagen der medizinischen Mikrobiologie	4 (5)	-/-/-	-/-/-		2/-/2	
Molekularbiologie	3 (4)	2/1/-				
Immunologie	4 (5)		2/-/2			
Zellbiologie	2 (3)			2/-/-		
Genetik	4 (5)	2/-/-	-/2/-			
Computational Neuroscience I	3 (4)			2/1/-		
Computational Neuroscience II	3 (4)				2/1/-	
Biochemie	4 (5)			2/-/2		
Einführung in die Systemtheorie	4 (5)		2/2/-			
Technische Thermodynamik	4 (5)			2/2/-		
Strömungsmechanik I	4 (5)			2/2/-		
Bioverfahrenstechnik I	4 (5)				3/-/1	
Summe	95 (120)	23	24	26	22	

Legende zu den Anlagen: SWS Semesterwochenstunden

Vorlesung

Ü Übung

Ρ Praktikum

ΚP Kreditpunkte Anlage 2 : Studienplan Hauptstudium

Studiengang: Biosystemtechnik

Lehrgebiet	SW	/S (KP)	5.	6.	7.	8.	9.	10.
Pflichtbereich:	-	(69)						D
Regelungstechnik	4	(6)	2/2/-					P L
Molekulare Zellbiologie I	3	(4)	2/1/-					О М
Molekulare Zellbiologie II	7	(11)		2/1/4				A R
Chemie der Signaltransduktion	2	(3)	2/-/-					B E
Regulationsbiologie	3	(4,5)	2/1/-					I
Neuromodelling/Neuronale Netze	2	(3)				2/-/-		ı
Selbstorganisation in der Biophysik	4	(6)		2/2/-				
Nichtlineare Dynamik	2	(3)				2/-/-		
Modellierung von Bioprozessen	3	(4,5)			2/1/-			
Systemverfahrenstechnik	3	(4,5)	2/1/-					
Systemtheorie	3	(4,5)	2/1/-					
Grundlagen der Prozesse der VT	6	(9)	4/2/-					
Bioinformatik	4	(6)		2/2/-				
Wahlpflichtbereich:	30	(111)						
Wahlpflichtfächer	22	(36)						
Betriebswirtschaftliche Fächer/ Recht	4	(6)						
Nichttechnisches Wahlpflichtfach	4	(6)						
Diplomarbeit		(30)						
Studienarbeit		(15)						
Praktikum		(18)						
Summe:	76	(180)	24	15	3	4		

Die Wahlpflichtfächer und das Fachpraktikum im Umfang von 16 Wochen können wahlweise in das 7., 8. oder 9. Semester gelegt werden.

Modul: Mathematik für Ingenieure

bestehend aus Mathematik I – III für Ingenieure, Stochastik für Ingenieure (Mathematik IV) und Numerik für Ingenieure.

Ziele des Moduls (Kompetenzen):

Vermittlung von mathematischen Grundlagen und Modellen. Aufbau von Fähigkeiten, technisch-technologische Prozesse und Probleme mathematisch auszudrücken. Bereitstellung von Werkzeugen zur Lösung von mathematisch formulierten technischen und technologischen Problemen.

Inhalt:

Mathematik I – III für Ingenieure

- Lineare Algebra: Determinanten, Matrizen, Vektorräume, lineare Gleichungssysteme; Eigenwerte und Eigenvektoren
- Differential- und Integralrechnung für Funktionen einer Variabler: Grenzwerte, Stetigkeit, Ableitungen, bestimmtes und unbestimmtes Integral, Integrationsregeln, Anwendungen
- Folgen und Reihen, Fourier-Reihen
- Gewöhnliche Differentialgleichungen: 1. und höherer Ordnung, Systeme,
- Differential- und Integralrechnung für Funktionen mehrer Variabler: Partielle Ableitungen, Tangentialebene, Extremwerte, Fehlerrechnung, Mehrfachintegrale, Linienintegrale, Integralsätze

Stochastik für Ingenieure (Mathematik IV)

 Relative Häufigkeit, Wahrscheinlichkeitsbegriff, diskrete und stetige Zufallsgrößen, Verteilungsfunktion, Momente, Korrelation, Grundprinzipien der Mathematischen Statistik.

Numerik für Ingenieure

• Direkte und iterative Verfahren zur Lösung linearer und nichtlinearer Gleichungssysteme, polynomiale Interpolation, Spline-Interpolation, numerische Integration, Anfangswertaufgaben für gewöhnliche Differentialgleichungen

Lehrformen:

Vorlesungen mit Übungen

Voraussetzung für die Teilnahme:

Jeweils die davorliegenden Teile des Moduls Mathematik für Ingenieure

Arbeitsaufwand:

Mathematik für Ingenieure I – III jeweils 3/2 SWS Stochastik für Ingenieure (Mathematik IV) 2/1 SWS Numerik für Ingenieure 2/2 SWS

Leistungsnachweise/Prüfung/Credits:

3 Klausuren jeweils in Mathematik I / II für Ingenieure, Mathematik III / Stochastik für Ingenieure (Mathematik IV), sowie Numerik für Ingenieure

5 Leistungsnachweise jeweils für Mathematik I – III, Stochastik für Ingenieure (Mathematik IV), Numerik für Ingenieure

Verantwortliche:

Prof. Dr. G. Christoph Prof. Dr. N. Gaffke Prof. Dr. E. Girlich

Literatur:

Meyberg, K.; Vachenauer, P.: Höhere Mathematik 1/2, Springer-Verlag, Berlin, 1993.

Leupold, W.; u.a.: Mathematik -- ein Studienbuch für Ingenieure, Band 1, Band 2. Fachbuchverlag Leipzig – Köln, 1994/1995.

Engeln-Müllges, G., u.a..: Kompaktkurs Ingenieur-Mathematik. Fachbuchverlag Leipzig, 1999.

Finkenstein; u.a.: Arbeitsbuch Mathematik für Ingenieure I / II Teubner Stuttgard-Leipzig-Wiesbaden 2002

Christoph, G., Hackel, H.: Starthilfe Stochastik, Teubner Stuttgard-Leipzig-Wiesbaden 2002.

Modul: Informatik

Ziele des Moduls (Kompetenzen):

Einführung in die Informatik für Ingenieure

Inhalt:

- Einführung in die Informatik
- Algorithmierung und Programmierung
- Grundsätzliches zum Programmieren in C
- Datenstrukturen
- Funktionen
- Zeiger und Dateien
- Objektorientierte Programmierung C++
- Anwendungen

Lehrformen:

Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

3SWS

Leistungsnachweise/Prüfung/Credits:

Klausur (2h) 4CP

Verantwortliche:

Prof. Dr.-Ing.habil. Georg Paul

Literatur:

Paul, Hollatz, Jesko, Mähne: Grundlagen der Informatik für Ingenieure, Eine Einführung mit C/C++, B.G. Teubner Stuttgart . Leipzig . Wiesbaden , 1. Auflage Oktober 2003

Modul: Physik I

Ziele des Moduls (Kompetenzen):

Vermittlung der Grundlagen der Experimentalphysik und Erwerb von physikalischen Kenntnissen und Fähigkeiten, die für das Studium der Biosystemtechnik notwendig sind.

Inhalt:

Vorlesung: Kinematik und Dynamik der Punktmasse und des Starren Körpers, Arbeit und Energie, Mechanik deformierbarer Medien, Ruhende und Strömende Flüssigkeiten und Gase, Thermodynamik und Gaskinetik, I. und II. Hauptsatz der Thermodynamik, Kinetische Gastheorie, Reale Gase, Phasenumwandlungen, Ausgleichsvorgänge.

Übungen: Übungsaufgaben zu Physik I

Lehrformen:

Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

Keine

Arbeitsaufwand:

3SWS

Leistungsnachweise/Prüfung/Credits:

Klausur (K 3) 4CP

Verantwortliche:

Dr. rer. nat. habil. Peter Streitenberger

Literatur:

- H. Stroppe, H. Langer, P. Streitenberger, E. Specht: *PHYSIK für Studenten der Natur- und Ingenieurwissenschaften*, 12., neu bearbeitete Auflage, Fachbuchverlag Leipzig im Carl Hanser Verlag, München, Wien, 2003.
- H. Stroppe, P. Streitenberger, E. Specht: *PHYSIK Beispiele und Aufgaben, Band1: Mechanik-Wärmelehre*, 2. verbesserte Auflage, Fachbuchverlag Leipzig im Carl Hanser Verlag, München, Wien, 2003.
- H. Stroppe, P. Streitenberger, J. Zeitler, H. Langer, E. Specht: *PHYSIK Beispiele und Aufgaben, Band 2: Elektrizität und Magnetismus-Schwingungen und Wellen-Atom-und Kernphysik*, Fachbuchverlag Leipzig im Carl Hanser Verlag, München, Wien, 1997.

Ergänzungsliteratur wird in den Lehrveranstaltungen bekannt gegeben bzw. ist im Internet unter http://www.uni-magdeburg.de/iep/lehreiep.html oder http://hydra.nat.uni-magdeburg.de/ing/v.html zu finden.

Modul: Physik II

Ziele des Moduls (Kompetenzen):

Vermittlung der Grundlagen der Experimentalphysik und Erwerb von physikalischen Kenntnissen und Fähigkeiten, die für das Studium der Biosystemtechnik notwendig sind.

Inhalt:

Vorlesung: Gravitation, Feldbegriff, Elektrizität und Magnetismus, Elektrische Leitungsvorgänge in Stoffen, Mechanische und Elektrische Schwingungen, Allgemeine Wellenlehre, Schallwellen, Elektromagnetische Wellen, Strahlen- und Wellenoptik, Struktur der Materie, Atombau und Spektren, Grundlagen der Quantenphysik, Elektrische und Magnetische Eigenschaften von Stoffen, Atomkerne, Elementarteilchen.

Praktikum: Versuche zur Mechanik, Wärmelehre, Elektrik, Optik

Lehrformen:

Vorlesung und Praktikum

Voraussetzung für die Teilnahme:

Keine

Arbeitsaufwand:

4SWS

Leistungsnachweise/Prüfung/Credits:

Praktikumsschein (PS) 5CP

Verantwortliche:

Dr. rer. nat. habil. Peter Streitenberger

Literatur:

- H. Stroppe, H. Langer, P. Streitenberger, E. Specht: *PHYSIK für Studenten der Natur- und Ingenieurwissenschaften*, 12., neu bearbeitete Auflage, Fachbuchverlag Leipzig im Carl Hanser Verlag, München, Wien, 2003.
- H. Stroppe, P. Streitenberger, E. Specht: *PHYSIK Beispiele und Aufgaben, Band1: Mechanik-Wärmelehre*, 2. verbesserte Auflage, Fachbuchverlag Leipzig im Carl Hanser Verlag, München, Wien, 2003.
- H. Stroppe, P. Streitenberger, J. Zeitler, H. Langer, E. Specht: *PHYSIK Beispiele und Aufgaben, Band 2: Elektrizität und Magnetismus-Schwingungen und Wellen-Atom-und Kernphysik*, Fachbuchverlag Leipzig im Carl Hanser Verlag, München, Wien, 1997.

Ergänzungsliteratur wird in den Lehrveranstaltungen bekannt gegeben bzw. ist im Internet unter http://www.uni-magdeburg.de/iep/lehreiep.html oder http://hydra.nat.uni-magdeburg.de/ing/v.html zu finden.

Modul: Anorganische Chemie

Ziele des Moduls (Kompetenzen):

Erwerb naturwissenschaftlicher Kenntnisse und Fähigkeiten, die für das Studium der beruflichen Fachrichtung Biosystemtechnik notwendig sind.

Ausgehend von den grundlegenden Inhalten der Allgemeinen und Anorganischen Chemie soll die Fähigkeit vermittelt werden, aus allgemeinen Gesetzmäßigkeiten die für den Studiengang relevanten konkreten Eigenschaften und das spezifische Verhalten von Stoffen und Stoffgemischen abzuleiten.

Inhalt:

Anorganische Chemie

(Allgemeine und Anorganische Chemie)

- stoffliche Systeme und stoffliche Zusammensetzung
- Elementarteilchen, Atombau
- Elektronenkonfiguration, Periodensystem der Elemente
- chemische Bindung, Molekül- und Kristallstrukturen
- homogene und heterogene Systeme
- Grundlagen der Thermodynamik, Kinetik und Elektrochemie
- Grundlagen chemischer Reaktionen

Lehrformen:

Vorlesung und Übungen

Voraussetzung für die Teilnahme:

Keine

Arbeitsaufwand:

3SWS

Leistungsnachweise/Prüfung/Credits:

Klausur 4CP

Verantwortliche:

Prof. Dr.rer.nat.habil. Frank T. Edelmann

Literatur:

Wird in den Lehrveranstaltungen bekannt gegeben.

Modul: Chemisches Grundpraktikum

Ziele des Moduls (Kompetenzen):

Vermittlung von apparativen und theoretischen Grundlagen der Chemie anhand einfacher Laborversuche

Inhalt:

Organische Chemie

Einführung in die theoretischen Grundlagen von Reaktionen organischer Verbindungen und in grundlegende Labortechniken, wie: Destillieren, Umkristallisieren, Schmelzpunktbestimmung, Messung des

Brechungsindexes, Chromatographische Verfahren

• Anorganische Chemie

Einführung in die theoretischen Grundlagen der anorganischen Chemie, wie: Atombau, Bindungstheorie, und Eigenschaften von Elementen und Verbindungen. Einführung in grundlegende Labortechniken anhand von Ionenreaktionen in wässrigen Lösungen sowie der qualitativen und quantitativen Analyse.

Physikalische Chemie

Einführung in die physikalisch-chemischen Grundlagen der Thermodynamik, der Kinetik und des Aufbaus der Materie anhand von Laborversuchen.

Lehrformen:

Praktikum mit Übung

Voraussetzung für die Teilnahme:

Klausur Anorganische Chemie (1. Semester)

Arbeitsaufwand:

OC/AC/PC: 1., 2. und 4. Semester je 1SWS Praktikum, 1 SWS Übung

Leistungsnachweise/Prüfung/Credits:

7CP

Verantwortliche:

Dr. Martin Cordes, Dr. Jochen Gottfriedsen, Dr. Yuri Suchorski

Literatur:

Organische Chemie:

Organikum – Organisch-chemisches Grundpraktikum, Organische Chemie, Vollhardt, VCH

Anorganische Chemie:

Anorganische Chemie, Riedel, deGruyter; Lehrbuch der analytischen und präparativen anorganischen Chemie, Jander Blasius

Physikalische Chemie:

Wird bei Veranstaltungsbeginn bekanntgegegeben.

Modul: Organische Chemie

Ziele des Moduls (Kompetenzen):

Vermittlung der Grundlagen in der Organischen Chemie, Bindungsmodelle des Kohlenstoffs, Systematik in der Organischen Chemie, Grundreaktionen, Funktionelle Gruppen, Naturstoffe.

Inhalt:

- Bindungsmodelle des Kohlenstoffs
- Chemische Bindung
- Systematik in der Organischen Chemie
- Radikalreaktionen
- Nucleophile Substitutionen
- Eliminierungen
- Additionen
- Aromatische Substitutionen
- Oxidationen
- Carbonylreaktionen
- Umlagerungen
- Funktionelle Gruppen
- Naturstoffe

Lehrformen:

Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

Anorganische Chemie

Arbeitsaufwand:

3SWS

Leistungsnachweise/Prüfung/Credits:

Klausur 4CP

Verantwortlicher:

Prof. Dr. D. Schinzer

Literatur:

wird bekannt gegeben

Studiengang: Biosystemtechnik
Modul: Physikalische Chemie
Ziele des Moduls (Kompetenzen):
Ziele des Moduls (Nompetenzen).
Vermittlung der Grundlagen der Physikalischen Chemie (makroskopische
Beschreibung des Verhaltens der Materie).
Describing des vernations der materia).
Inhalt:
Chemische Thermodynamik (Gasgesetze, Hauptsätze, Phasengleichgewichte,
Mischphasen, chemische Gleichgewichte u.a.m.)
Formalkinetik (einfache und komplexere Geschwindigkeitsgesetze,
Temperaturabhängigkeit, Katalyse u.a.m.)
Grundlagen der Elektrochemie (Thermodynamik und Kinetik von Elektroden gegenen)
Elektrodenprozessen)
Lehrformen:
Vorlesung mit Übungen
Voraussetzung für die Teilnahme:
Mathematik I/II
Arbeitsaufwand:
4SWS
Leistungsnachweise/Prüfung/Credits:
Klausur 5CP
Verantwortliche:
Prof. Dr. H. Weiß, Dr. J. Vogt
Literatur:

Modul: Grundlagen der Biologie

Ziele des Moduls (Kompetenzen):

Vermittlung von Grundlagen der allgemeinen Biologie, Zoologie, Zellbiologie, Molekularbiologie, Genetik, Humanbiologie.

Inhalt:

Vorlesung:

- Allgemeine Zoologie, Tierphysiologie, Neurobiologie
- Zellbiologie, Biochemie der Zelle, Genetik
- Verhaltensbiologie
- Entwicklungsbiologie

Praktikum:

- Histologie/Zytologie
- Einführung in die histologischen Präparationstechniken und Färbeverfahren
- Klassifikation gefärbter Gewebe
- In vitro Methoden
- Immuncytochemie/Enzymhistochemie
- Quantifizierungsmethoden in der Histologie
- Einführung in die Konfokale Laserscanmikroskopie
- Einführung in die Elektronenmikroskopie
- Einführung in biochemische und molekularbiologische Techniken
- In vivo Mikrodialyse

Lehrformen:

Vorlesung mit Praktikum

Voraussetzung für die Teilnahme:

Grundlagenfächer des Vordiplom

Arbeitsaufwand:

4SWS

Leistungsnachweise/Prüfung/Credits:

Klausur und Praktikumsprotokoll 5CP

Verantwortliche:

Prof. Dr. Braun, Prof. Dr. Missler

Literatur:

Allgemeine Zoologie:

Wehner, Gehring: Zoologie, ISBN 3133674234

Remane/Storch/Welsch,: Kurzes Lehrbuch der Zoologie, Fischer-Verlag

Zellbiologie:

Alberts et al (Molecular Biology of the Cell (mit CD)

Lodish et al (Molecular Cell Biology (mit CD)

Plattner und Hentschel; Taschenlehrbuch Zellbiologie, ISBN 3131065125

Online zur allgemeinen Biologie:

http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookTOC.html

Studiengang: Biosystemtechnik
Modul: Grundlagen der Medizinischen Mikrobiologie
Ziele des Moduls (Kompetenzen):
Vermittlung mikrobiologischer Grundkenntnisse.
Inhalt:
A) DAKTEDIEN
A) BAKTERIEN
1.) Aufgaben und Gegenstand der Medizinischen Mikrobiologie
2.) Infektionslehre (Pathogenität, Virulenz, Bakterienflora)3.) Mikrobielle Infektabwehrmechanismen
4.) Allgemeine und spezielle Bakteriologie(grampositive / gramnegative Erreger,
ausgewählte Krankheitsmodelle)
B) VIREN
1.) Virusaufbau, Struktur, Pathogenese, Abwehr
2.) Spezielle Virologie (z. B. Picornaviren)im Verbund mit Krankheitsbildern
C) Mykologie, Parasitologie (Fallbeispiele)
D) Grundlagen der Chemotherapie (antibakteriell, antiviral)
E) Infektionsdiagnostik; Impfungen, Epidemiologie und Prävention
Lehrformen:
Vorlesung mit Praktika Voraussetzung für die Teilnahme:
Grundlagenfächer des Vordiplom
Arbeitsaufwand:
4SWS Leistungsnachweise/Prüfung/Credits:
Klausur 5CP
Verantwortliche:
Prof. Dr. med. W. König Literatur:
Literatur.
1

Studiengang: Biosystemtechnik			
Modul: Molekularbiologie			
Ziele des Moduls (Kompetenzen):			
Vermittlung molekularbiologischer Grundkenntnisse.			
Inhalt:			
Prokaryonten			
- Einführung - Eigenschaften			
- Kultivierung von Prokaryonten			
- Grundmechanismen des Stoffwechsels			
- Grundlagen der Genetik und Proteinbiosynthese			
Eukaryonten			
- Prinzipien der Organisation von Eukaryonten			
- Struktur eukaryontischer Gene			
Mechanismen der TranskriptionRegulation der Transkription (Genaktivität)			
- Mechanismen der Translation			
- Das Ribosom: Struktur und Funktion			
- Regulation der Proteinbiosynthese			
Lehrformen:			
Vorlesung mit Übungen			
Voraussetzung für die Teilnahme:			
Grundlagenfächer des Vordiplom			
Arbeitsaufwand: 3SWS			
Leistungsnachweise/Prüfung/Credits:			
Klausur 4CP			
Verantwortliche:			
Prof. Dr. M. Naumann / Prof. Dr. U. Reichl Literatur:			
Literatur.			

Studiengang: Biosystemtechnik			
Modul: Zellbiologie			
Ziele des Moduls (Kompetenzen):			
Vermittlung zellbiologischer Grundkenntnisse.			
Inhalt:			
 Einführung in die Zellbiologie Zellorganisation und Organellen Membranen und Membranorganisation Zelltransport Zellkommunikation 			
Lehrformen: Vorlesung			
Voraussetzung für die Teilnahme: Grundlagenfächer des Vordiplom			
Arbeitsaufwand: 2SWS			
Leistungsnachweise/Prüfung/Credits: Klausur 3CP			
Verantwortliche: Prof. Dr. M. Naumann			
Literatur:			

Modul: Genetik

Ziele des Moduls (Kompetenzen):

Vermittlung von Grundkenntnissen der Genetik.

Inhalt:

- Biomoleküle
- Genetische Information
- Genexpression und Genregulation
- Methoden der Molekulargenetik (1)
- Methoden der Molekulargenetik (2)
- Struktur und Funktion des Genoms
- Zytogenetische Grundlagen
- Mutationen
- Formalgenetik (1)
- Formalgenetik (2)
- Populationsgenetik
- Aspekte der Bioinformatik
- Entwicklungsgenetik (1)
- Entwicklungsgenetik (2)
- Modellorganismen

Lehrformen:

Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

Grundlagenfächer des Vordiplom

Arbeitsaufwand:

4SWS

Leistungsnachweise/Prüfung/Credits:

Klausur

5CP

Verantwortliche:

Prof. Dr. P. Wieacker

Literatur:

T. Strachan and A. Read: Human Molecular Genetics.

Bios Scientific Publishers, 1999

Modul: Computational Neuroscience I

Ziele des Moduls (Kompetenzen):

Vermittlung der grundlegenden Probleme und Methoden der theoretischen Neurowissenschaften. Einzelne Neuronen, neuronaler Code, und Informationstheorie.

Inhalt:

Passive membranen

Active membranen

Analyse des Spikes im Phasenraum

Kabelgleichung, dendritische Morphologie

Rauschen in spikenden Neuronen

Synaptische Funktion

Synaptische Plastizität

Tuningkurven und rezeptive Felder

Quantifizierung von Verhalten und Wahrnehmung

Populationskodes

Fisher information

Shannon information

Statistik natuerlicher Reize

Neuronale Transferfunktionen und Reizstatistik

Lehrformen:

Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

Grundlagenfächer des Vordiplom

Arbeitsaufwand:

2SWS + 1SWS (Übung)

Leistungsnachweise/Prüfung/Credits:

Klausur (2h) 4CP

Verantwortliche:

Prof. Jochen Braun

Literatur:

Dayan & Abbott (2001) Theoretical Neuroscience, MIT Press Kapitel 1 bis 6.

Modul: Computational Neuroscience II

Ziele des Moduls (Kompetenzen):

Vermittlung der grundlegenden Probleme und Methoden der theoretischen Neurowissenschaften. Netzwerkmodelle, Plastizität und Lernen, Konditionierung und Verstärkung, Repräsentationslernen

Inhalt:

Feedforward Netzwerke

Stabilität und Asymptotisches Lernverhalten

Rekurrente Netzwerke

Dichotomien als Bedeutungszuweisungen, Grenzen linearer Modelle

Exzitatorisch-inhibitorische Netzwerke

Plastizität und Lernen

Nichtüberwachtes Lernen

Selbstorganisierende Karten

Überwachtes Lernen

Lernkapazität und Robustes Lernen

Konditionierung und Verstärkung

Lernen zeitlich verzögerter Belohnungen

Strategien und Verhaltenkontrolle (,actor-critic')

Generative und Klassifizierende Modelle

Erwartungsmaximierung

Prinzipielle und Unabhängige Komponentenanalyse

Lehrformen:

Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

Grundlagenfächer des Vordiplom

Arbeitsaufwand:

2SWS + 1SWS (Übung)

Leistungsnachweise/Prüfung/Credits:

Klausur (2h) 4CP

Verantwortliche:

Prof. Andreas Wendemuth / Prof. Jochen Braun

Literatur:

Dayan & Abbott (2001) Theoretical Neuroscience, MIT Press Kapitel 7 bis 10.

Modul: Biochemie

Ziele des Moduls (Kompetenzen):

Vermittlung der Grundlagen der Biochemie.

Inhalt:

- Von der Chemie zur Biochemie: Moleküle und Prinzipien
- Proteine: Aufbau und Funktion
- Enzyme und enzymatische Katalyse
- Struktur- und Motorproteine
- Zentrale Wege des katabolen und anabolen Stoffwechsels
- Atmung und Photosynthese
- Membranproteine und Rezeptoren
- Prinzipien der Bioenergetik und Membranbiochemie

Lehrformen:

Vorlesung mit Praktikum

Voraussetzung für die Teilnahme:

Anorganische und Organische Chemie, Chemisches Praktikum

Arbeitsaufwand:

2 SWS Vorlesung + 2 SWS Praktikum

Leistungsnachweise/Prüfung/Credits:

Klausur 5CP

Verantwortliche:

Prof. W. Marwan

Literatur: wird in der Vorlesung bekannt gegeben

Modul: Einführung in die Systemtheorie

Ziele des Moduls (Kompetenzen):

Ziel der Lehrveranstaltung ist eine einführende Behandlung dynamischer Systeme. Sie versucht, neben einfachen formalen Konzepten auch ein intuitives Verständnis für grundlegende dynamische Phänomene zu vermitteln. An Hand von Beispielen wird gezeigt, dass solche Phänomene in einer Vielzahl von technischen und nichttechnischen Anwendungsgebieten auftreten.

Inhalt:

- Grundbegriffe der Systemtheorie (Systeme, Signale, statische und dynamische Systeme)
- Beispiele für dynamische Systeme (Geometrisches Wachstum, Einfaches Populationsmodell, Modell einer isolierten Volkswirtschaft, Exponentielles Wachstum, Räuber-Beute-Modell, Elektrisches Netzwerk, Mechanische Systeme)
- Klassifikation kausaler Systeme (Linearität, Zeitinvarianz, Autonomie)
- Differenzengleichungen (Autonome Differenzengleichungen, Autonome lineare Differenzengleichungen)
- Differentialgleichungen (Autonome Differentialgleichungen, Autonome lineare Differentialgleichungen)
- Steuerung und Regelung (Zustandsraum, Steuerbarkeit, Stabilisierung durch Regelung)
- Elemente der linearen Algebra (Vektoren und Matrizen, Vektor- und Matrixoperationen, Basisvektoren und Koordinatensysteme, Wechsel des Koordinatensystems, Eigenwerte und –vektoren)

Lehrformen:Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

4SWS

Leistungsnachweise/Prüfung/Credits:

Klausur 5CP

Verantwortliche:

Prof. Dr.-Ing. J. Raisch

Literatur:

Modul: Technische Thermodynamik

Ziele des Moduls (Kompetenzen):

Vermittlung von Grundlagen zur Energieübertragung und Energiewandlung sowie zur Bilanzierung und zum Zustandsverhalten von Systemen

Inhalt:

- 1. Einführung
- 2. Wärme als Form der Energieübertragung
- 3. Energietransport durch Leitung (stationär und instationär)
- 4. Wärmeübergang bei freier und erzwungener Konvektion
- 5. Energietransport durch Strahlung
- 6. Wärmeübertrager
- 7. Arbeit und innere Energie
- 8. Thermodynamische Hauptsätze
- 9. Zustandsverhalten einfacher Stoffe
- 10. Prozesse in Maschinen, Apparaten und Anlagen energetische Bewertung
- 11. Dämpfe Zustandsverhalten und Kreisprozesse
- 12. Energie und Umwelt

Lehrformen:

Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

Physik. Mathematik

Arbeitsaufwand:

4SWS

Leistungsnachweise/Prüfung/Credits:

Klausur 5CP

Verantwortliche:

Prof. Dr.-Ing. J. Schmidt

Literatur:

Stephan, K.; Mayinger, F.: Thermodynamik. Band 1 Einstoffsysteme. Grundlagen und technische Anwendungen. Springer Verlag 1998 (15. Auflage)

Iben, H. K.; Schmidt, J.: Starthilfe Technische Thermodynamik. Teubner Verlag 1999

Modul: Strömungsmechanik I

Ziele des Moduls (Kompetenzen):

Vermittlung der Grundlagen der Strömungsmechanik und der Strömungsdynamik. Untersuchung und Berechnung von inkompressiblen Strömungen sowie Einführung für kompressible Strömungen. Es wird angestrebt, eine sichere Verwendung der Bernoulli.-Gleichung und des Impulssatzes in allen Varianten zu erhalten. Außerdem müssen Grundkonzepte wie Kontrollvolumen und Erhaltungsprinzipien gemeistert werden.

Inhalt:

- Einführung, Grundprinzipien der Strömungsdynamik
- Wiederholung notwendiger Konzepte der Thermodynamik und der Mathematik
- Kinematik
- Kontrollvolumen und Erhaltungsgleichungen
- Reibungslose Strömungen, Euler-Gleichungen
- Ruhende Strömungen
- Bernoulli-Gleichung, Berechnung von Rohrströmungen
- Impulssatz, Kräfte und Momente
- Reibungsbehaftete Strömungen, Navier-Stokes-Gleichungen
- Ähnlichkeitstheorie, dimensionslose Kennzahlen
- Grenzschichten
- Grundlagen der turbulenten Strömungen
- Experimentelle und numerische Untersuchungsmethoden

Lehrformen:

Vorlesung mit Übungen, Demonstrationsversuche

Voraussetzung für die Teilnahme:

Grundkenntnisse in Mathematik, Physik, Thermodynamik

Arbeitsaufwand:

4SWS

Leistungsnachweise/Prüfung/Credits:

Klausur 5CP

Verantwortlicher:

Prof. Dr.-Ing. Dominique Thévenin

Literatur:

Information wird während der Vorlesung gegeben

Modul: Bioverfahrenstechnik I

Ziele des Moduls (Kompetenzen):

Ziel der Vorlesung ist es, einen Überblick zu geben über die biologischen, apparativen und theoretischen Grundlagen von Fermentationsprozessen, die im Rahmen von Forschung und industrieller Produktion weit verbreitet eingesetzt werden.

Inhalt:

- Einführung in die Bioverfahrenstechnik
- Mikroorganismen
- Wachstum von Mikroorganismen
- Fermentationsprozesse
- Apparative Grundlagen
- Messen und Regeln
- Aufarbeitung
- Chromatographische Verfahren
- Industrielle Praxis

Lehrformen:

Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

Grundlagenfächer des Vordiplom

Arbeitsaufwand:

4SWS

Leistungsnachweise/Prüfung/Credits:

Klausur 50

Verantwortliche:

Prof. Dr.-Ing. U. Reichl

Literatur:

Wird in der Vorlesung angegeben.

Studiengang: Biosystemtechnik
Modul: Immunologie
Ziele des Moduls (Kompetenzen):
Vermittlung immunologischer Grundkenntnisse
Inhalt:
 Einführung in die Immunologie Immunorgane Immunzellen Immunmechanismen Immunität
Lehrformen: Vorlesung und Praktikum
Voraussetzung für die Teilnahme: Grundlagenfächer des Vordiplom
Arbeitsaufwand: 4SWS
Leistungsnachweise/Prüfung/Credits: Klausur (Zugangsvoraussetzung für das Praktikum) 5CP
Verantwortliche: Prof. Dr. B. Schraven
Literatur:
GR. Burmester, A. Pezzuto: Taschenatlas der Immunologie, Thieme Verlag Stuttgart C.A. Janeway et al. Immunologie, Spektrum Akademischer Verlag, Heidelberg

Modul: Regelungstechnik

Ziele des Moduls (Kompetenzen):

Vermittlung der begrifflichen und methodischen Grundlagen der Regelungstechnik und Herausbildung von Fähigkeiten bei der Anwendung einfacher Analyse- und Entwurfsverfahren für lineare/linearisierte Regelungen.

Inhalt:

Anhand von einführenden Beispielen werden Grundbegriffe, Aufgaben, Prinzipien und Grundstrukturen der Regelungstechnik formuliert. Dabei werden Anschaulichkeit und Bedeutung der Blockschaltbilddarstellung erkennbar. Bei der Modellierung der wesentlichen Regelkreisglieder, vor allem der Regelstrecken, wird gezeigt, dass es häufig berechtigt ist, nichtlineares Übertragungsverhalten zu linearisieren. Die gängigen Linearisierungsmethoden für statische und dynamische Modelle werden behandelt. Für lineare (linearisierte) Regelkreise werden die Methoden der Übertragungsfunktionsdarstellung eingeführt. Es folgt die Behandlung von Grundgliedern und Haupttypen von Reglern in linearen Regelkreisen. Darauf aufbauend ist es dann verhältnismäßig einfach, die Beschreibung des geschlossenen Regelkreises zu gewinnen und das Regelkreisverhalten - insbesondere die Stabilität sowie die statische und dynamische Regelgüte - zu analysieren.

Lehrformen:

Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

Grundlagenfächer des Vordiplom

Arbeitsaufwand:

4SWS

Leistungsnachweise/Prüfung/Credits:

Klausur 6CP

Verantwortliche:

Prof. Dr.-Ing. habil. U. Korn

Literatur:

wird aktuell in der Lehrveranstaltung bekannt gegeben.

Studiengang: Biosystemtechnik
Modul: Molekulare Zellbiologie I
Ziele des Moduls (Kompetenzen):
Vermittlung von zellbiologischen/immunologischen Spezialkenntnissen
Inhalt:
 Molekulare Immunologie Immunantwort Signaltransduktion der Immunantwort Immunregulation Immundefizienzen Tumorimmunologie Autoimmunerkrankungen
Lehrformen: Vorlesung mit Übungen
Voraussetzung für die Teilnahme:
Grundlagenfächer des Diplom Arbeitsaufwand:
3SWS
Leistungsnachweise/Prüfung/Credits:
Klausur 4CP Verantwortliche:
Prof. Dr. B. Schraven
Literatur:
GR. Burmester, A. Pezzuto: Taschenatlas der Immunologie, Thieme Verlag Stuttgart CA. Janeway et al.: Immunologie, Spektrum Akademischer Verlag, Heidelberg

Studiengang: Biosystemtechnik
Modul: Molekulare Zellbiologie II
Ziele des Moduls (Kompetenzen):
Vermittlung von zellbiologischen Spezialkenntnissen sowie Methodenpraktikum
Inhalt:
 Mechanismen der Zelldissoziation, Motilität und Invasion Zellzyklus Regulation und Dysregulation Angiogenese Entzündung und Tumorentstehung Tumorsuppressoren Zelluläre Infektionsbiologie Zelluläre Signalprozesse
Lehrformen: Vorlesung mit Übungen und Praktikum
Voraussetzung für die Teilnahme: Grundlagenfächer des Diplom
Arbeitsaufwand: 7 SWS
Leistungsnachweise/Prüfung/Credits: Klausur (Zugangsvoraussetzung für das Praktikum) 11CP
Verantwortliche: Prof. Dr. M. Naumann
Literatur:

33 Studiengang: Biosystemtechnik Modul: Chemie der Signaltransduktion Ziele des Moduls (Kompetenzen): Vermittlung der molekularen Mechanismen der zellulären Signaltransduktion. Inhalt: • Zelluläre Signaltransduktion • Hydrophile Signalmoleküle • Hydrophobe Signalmoleküle: Steroide, Vitamine, Tyroxin Hormone • Wachstumsfaktoren Kinasen Mediatoren Neurotransmitter Rezeptoren Störungen der Signaltransduktion Apoptose Tumorgenese Lehrformen: Vorlesung Voraussetzung für die Teilnahme: Anorganische Chemie **Arbeitsaufwand:** 2SWS Leistungsnachweise/Prüfung/Credits: Mündliche Prüfung (M) 3CP Verantwortlicher: Prof. Dr. D. Schinzer

Literatur:

wird bekannt gegeben

Modul: Regulationsbiologie

Ziele des Moduls (Kompetenzen):

Regulatorische Netzwerke und zelluläre Sensoren kontrollieren und steuern auf unterschiedliche Weise praktisch alle Lebensprozesse. In der Vorlesung lernen Sie, welche Arten von Netzwerken man kennt, wie sie konstruiert sind, nach welchen Funktionsprinzipien sie arbeiten und wie komplexe Netzwerke erforscht werden können.

Inhalt:

Einführung. Grundlagen und Werkzeuge

- Bedeutung regulatorischer Netzwerke in der Biologie
- Moleküle als Bauelemente regulatorischer Netzwerke
- Grundoperationen der Regulation: Rezeption, Verstärkung, Integration, Adaptation, Rückkoppelung, Schalten, Logische Verknüpfungen
- Experimentelle Strategien zur Analyse komplexer Netzwerke
- Konzepte mathematischer Modellierung, Petri-Netze, Reverse Modeling

Einfache Netzwerke und Modellsysteme

- Sehkaskade im Vertebraten-Auge und andere Signalkaskaden
- Regulation der Genexpression durch Rückkoppelung, sensorische Kontrolle, Metabolic Control
- Der Schalter des Phagen Lambda
- Künstliche Schalter und Netzwerke: auf dem Papier konstruiert, in E. coli implementiert

Komplexere Netzwerke

- Sporulation von Bacillus subtilis
- Regulation des Bewegungsvehaltens von Prokaryonten
- Periodische Prozesse: Circadiane Rhythmen und Zellzyklus
- Entwicklung eines Vielzellers: ein Wechselspiel von Zellteilung, Differenzierung und Apoptose

Lehrformen:

Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

Grundlagenfächer des Vordiplom: Chemisches Praktikum. Physikalische Chemie, Grundlagen der Molekularbiologie, Zellbiologie, Genetik

Arbeitsaufwand:

3SWS

Leistungsnachweise/Prüfung/Credits:

Mündliche Prüfung (M)

4,5CP

Verantwortlicher:

Prof. W. Marwan

Literatur:

Wird in der Vorlesung bekannt gegeben

Modul: Neuromodelling/Neuronale Netze

Ziele des Moduls (Kompetenzen):

Vermittlung von Grundlagen der Modellierung einzelner Nervenzellen und deren Verbände (Neuronale Netze)

Inhalt:

- Einleitung und Motivation
- Das Aktionspotential
 - Ruhemembranpotential
 - Hodgkin-Huxley-Model der Nervenleitung
 - Konzepte der Erregbarkeit
- Einfache Netzwerke
 - Perzeptron
 - Adaline
- Mehrschicht-Netzwerke
 - Backpropagation
 - Selbstorganisierende Karten
- Exkurs: Programmbeispiele der bisherigen Modelle
- Semantische Netzwerke
 - Aphasien im Netzwerk
- Zeitreihenanalyse
 - Hebbsche Lernregel
 - TD-Learning

Lehrformen:

Vorlesung

Voraussetzung für die Teilnahme:

Grundlagenfächer des Vordiplom

Arbeitsaufwand:

2SWS

Leistungsnachweise/Prüfung/Credits:

Mündliche Prüfung (M) 3CP

Verantwortliche:

PD Dr. R. König und Dr. M. Dahlem

Literatur:

Neuromodelling:

Biophysics of Computation: Information Processing in Single Neurons. Christof Koch.

Neuronale Netze:

Künstliche neuronale Netze. Das Lehrbuch, Dan W. Patterson.

Biologische Grundlagen:

Neurobiology of Neural Networks (Computational Neuroscience). Daniel Gardner (Editor).

Anwendung:

Object-Oriented Neural Networks in C++. Joey Rogers.

Online zur allgemeinen Biologie:

http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookTOC.html

Modul: Selbstorganisation in der Biophysik

Ziele des Moduls (Kompetenzen):

Vermittlung der Prinzipien von Selbstorganisation und Musterbildung in lebenden Systemen (und in geeigneten Modellsystemen)

Inhalt:

- Definition von selbstorganisierten Systemen
- Stationäre Strukturen (Phyllotaxis, Turing-Strukturen, Morphogenese)
- Dynamische Strukturen in erregbaren Medien Dynamik von r\u00e4umlich ausgebreiteten erregbaren Systemen: Wellen, Spiralwellen, Wellenausbreitung
- Dynamische Strukturen in biologischen Systemen:
 Zellaggregation; Chemotaxis; Herzschlag
- Methoden der raum-zeitlichen Analytik (Tomographie, konfokale Mikroskopie...)
- Evolution genetischer Information

Lehrformen:

Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

Grundlagenfächer des Vordiplom

Arbeitsaufwand:

4SWS

Leistungsnachweise/Prüfung/Credits:

Klausur 6CP

Verantwortliche:

Dr. M. Hauser und Prof. S. C. Müller

Literatur

W. Hoppe, W. Lohmann, H. Markl, H. Ziegler (Hrsg.): Biophysik (Springer, Berlin, 1982)

A. Goldbeter: Biochemical Oscillations and Cellular Rhythms (Cambridge University Press, Cambridge, 1996)

F. W. Schneider, A. F. Münster: Nichtlineare Dynamik in der Chemie (Spektrum, Heidelberg, 1998)

37	7
Studiengang: Biosystemtechnik	
Modul: Nichtlineare Dynamik	
Ziele des Moduls (Kompetenzen):	
Vermittlung der Grundkonzepte und mathematischen Behandlung von nichtlinearen dynamischen Systemen; physikalische, chemische und biologische Beispiele.	
Inhalt:	
 Grundkonzepte der Beschreibung deterministischer dynamischer Systeme nichtlineare Differentialgleichungen, Phasenraum, und Phasenfluss Stabilität von Lösungen, Fixpunkte und Bifurkationen, Katastrophen Oszillationen, erregbare Systeme Musterbildung in räumlich ausgedehnten Systemen Dissipative Strukturen (exemplarisch Rayleigh-Taylor-Instabilität, Rayleigh-Benard-Konvektion) Deterministisches Chaos, Routen ins Chaos dispersive Strukturen, Fronten und Solitonen 	
Lehrformen: Vorlesung	
Voraussetzung für die Teilnahme:	
Grundlagenfächer des Vordiplom Arbeitsaufwand:	
2SWS	
Leistungsnachweise/Prüfung/Credits:	
Mündliche Prüfung (M) 3CP Verantwortliche:	
Prof. Dr. R. Stannarius	

Literatur:

Modul: Modellierung von Bioprozessen

Ziele des Moduls (Kompetenzen):

Ziel der Vorlesung ist es, eine Einführung zu geben in die mathematische Modellierung von Fermentationsprozessen, die im Rahmen von Forschung und industrieller Produktion eingesetzt werden. Die Vorlesung wird unterstützt durch Übungen am Rechner und eine Einführung in MatLab.

Inhalt:

- Einführung in die Fermentationstechnik
- Mathematische Modelle
- Massenbilanzen
- Reaktionskinetiken
- Lösung der Modellgleichungen
- Batch Kulturen
- Kontinuierliche Kulturen
- Fed-Batch-Kulturen
- Sauerstoff-Transfer

Lehrformen:

Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

Grundlagenfächer des Vordiplom

Arbeitsaufwand:

3SWS

Leistungsnachweise/Prüfung/Credits:

Mündliche Prüfung (M) 4,5CP

Verantwortliche:

Prof. Dr.-Ing. U. Reichl

Literatur:

Wird in der Vorlesung bekannt gegeben.

Modul: Systemverfahrenstechnik

Ziele des Moduls (Kompetenzen):

Vermittlung von Grundlagen zur systemtechnischen Modellierung, Simulation, Analyse und Optimierung komplexer verfahrenstechnischer Prozesssysteme

Inhalt:

- Klassifizierung verfahrenstechnischer Systeme
- Bilanzierung
- Transport- und Reaktionskinetik
- Numerische Lösungsmethoden
- Grundlagen der Prozesssimulation
- Analyse der Prozessdynamik linearer Systeme
- Grundlagen der nichtlinearen Dynamik
- Prozessoptimierung
- Anwendungsbeispiele

Lehrformen:

Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

Grundlagenfächer des Vordiplom

Arbeitsaufwand:

3 SWS

Leistungsnachweise/Prüfung/Credits:

Klausur

4,5CP

Verantwortliche:

Prof. Dr.-Ing. K. Sundmacher

Literatur:

Skript "Systemverfahrenstechnik" und Literatur darin

Studiengang: Biosystemtechnik
Modul: Systemtheorie
Ziele des Moduls (Kompetenzen):
Die Lehrveranstaltung behandelt die Analyse und Synthese linearer zeitinvarianter Systeme in Zustandsdarstellung.
Inhalt:
 Zustandsbeschreibung dynamischer Systeme (Signale, Zustandsbeschreibung, stationäre Lösungen, Linearisierung um stationäre Lösungen) Analyse linearer zeitinvarianter Systeme (Wechsel des Koordinatensystems, Stabilität, Steuerbarkeit, Beobachtbarkeit) Realisierungen und Minimalrealisierungen linearer zeitinvarianter Systeme (Eingrößensysteme, Mehrgrößensysteme, Kalman-Zerlegung) Reglersynthese für lineare zeitinvariante Systeme (Zustandsrückführung, Zustandsschätzung, Beobachter, Kalman-Filter, Zustandsschätzung im Regelkreis – das Separationsprinzip)
Lehrformen: Vorlesung mit Übungen
Voraussetzung für die Teilnahme:
Grundlagenfächer des Vordiplom, Einführung in die Systemtheorie
Arbeitsaufwand:
3SWS Leistungsnachweise/Prüfung/Credits:
Klausur 4,5CP
Verantwortliche:
Prof. DrIng. J. Raisch
Literatur:

Studiengang: Biosystemtechnik
Modul: Grundlagen der Prozesse der VT
Ziele des Moduls (Kompetenzen):
Erwerb grundlegender verfahrenstechnischer Kenntnisse und Fähigkeiten, die für das Ingenieurstudium der Biosystemtechnik unbedingt notwendig sind.
Inhalt:
Verfahrenstechnik Grundlagen und Prozesse, Stoffcharakterisierung, Mechanische Prozesse (Zerkleinerung, Trennung, Mischen, Agglomerieren), Durch Gleichgewicht bzw. Kinetik kontrollierte thermische Trennprozesse Grundlagen des Stoff- und Wärmetransports sowie der Reaktormodellierung
Lehrformen: Vorlesung mit Übungen
Voraussetzung für die Teilnahme: Physik, Strömungsmechanik, Mechanik
Arbeitsaufwand:
6 SWS
Leistungsnachweise/Prüfung/Credits: Klausur 9CP
Verantwortliche:
Prof. DrIng. habil. Jürgen Tomas, Prof. DrIng. habil. Evangelos Tsotsas
Literatur: Wird in den Lehrveranstaltungen bekannt gegeben.

Modul: Bioinformatik

Ziele des Moduls (Kompetenzen):

Das Ziel des Moduls ist die Vermittlung der zurzeit wichtigsten algorithmischen und methodischen Grundlagen der Bioinformatik, insbesondere der Sequenzanalyse.

Inhalt:

- Grundlagen und Bedeutung der Bioinformatik
- Molekularbiologische Grundlagen
- Paarweises und multiples Alignment von Sequenzen mittels dynamischer Programmierung
- Heuristische Verfahren des Sequenzvergleichs
- Methoden der phylogenetischen Analyse
- Hidden-Markov-Modelle und deren Anwendungen
- Grundlagen und Methoden der Genexpressionsdatenanalyse

Lehrformen:

Vorlesung mit Übungen

Voraussetzung für die Teilnahme:

Grundlagenfächer des Vordiploms

Arbeitsaufwand:

4SWS

Leistungsnachweise/Prüfung/Credits:

Mündliche Prüfung (M) 6CP

Verantwortliche:

Prof. Dr. Eyke Hüllermeier

Literatur:

R. Merkl, S. Waak. Bioinformatik Interaktiv: Algorithmen und Praxis. Wiley-VHC, 2003; J. Setubal, J. Meidanis. Introduction to Computational Molecular Biology. PWS Publishing Company, 1997; AM. Lesk. Bioinformatik: Eine Einführung. Spektrum Akademischer Verlag, 2002.